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Abstract. Recently, sampling methods have been successfully applied
to enhance the sample quality of Generative Adversarial Networks (GANs).
However, in practice, they typically have poor sample efficiency because
of the independent proposal sampling from the generator. In this work,
we propose REP-GAN, a novel sampling method that allows general
dependent proposals by REParameterizing the Markov chains into the
latent space of the generator. Theoretically, we show that our reparam-
eterized proposal admits a closed-form Metropolis-Hastings acceptance
ratio. Empirically, extensive experiments on synthetic and real datasets
demonstrate that our REP-GAN largely improves the sample efficiency
and obtains better sample quality simultaneously.

Keywords: Generative Adversarial Networks · Sampling · Markov Chain
Monte Carlo · Reparameterization.

1 Introduction

Generative Adversarial Networks (GANs) [9] have achieved a great success on
generating realistic images in recent years [12,4]. Unlike previous models that
explicitly parameterize the data distribution, GANs rely on an alternative opti-
mization between a generator and a discriminator to learn the data distribution
implicitly. However, in practice, samples generated by GANs still suffer from
problems such as mode collapse and bad artifacts.

Recently, sampling methods have shown promising results on enhancing the
sample quality of GANs by making use of the information in the discriminator.
In the alternative training scheme of GANs, the generator only performs a few
updates for the inner loop and has not fully utilized the density ratio information
estimated by the discriminator. Thus, after GAN training, the sampling meth-
ods propose to further utilize this information to bridge the gap between the
generative distribution and the data distribution in a fine-grained manner. For
example, DRS [2] applies rejection sampling, and MH-GAN [27] adopts Markov
⋆ Corresponding Author
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Fig. 1: Illustration of REP-GAN’s reparameterized proposal with two pairing
Markov chains, one in the latent space Z, and the other in the sample space X .

chain Monte Carlo (MCMC) sampling for the improved sample quality of GANs.
Nevertheless, these methods still suffer a lot from the sample efficiency problem.
For example, as will be shown in Section 5, MH-GAN’s average acceptance ratio
on CIFAR10 can be lower than 5%, which makes the Markov chains slow to
mix. As MH-GAN adopts an independent proposal q, i.e., q(x′|x) = q(x′), the
difference between samples can be so large that the proposal gets rejected easily.

To address this limitation, we propose to generalize the independent proposal
to a general dependent proposal q(x′|x). To the end, the proposed sample can
be a refinement of the previous one, which leads to a higher acceptance ratio
and better sample quality. We can also balance between the exploration and
exploitation of the Markov chains by tuning the step size. However, it is hard
to design a proper dependent proposal in the high dimensional sample space X
because the energy landscape could be very complex [19].

Nevertheless, we notice that the generative distribution pg(x) of GANs is
implicitly defined as the push-forward of the latent prior distribution p0(z), and
designing proposals in the low dimensional latent space is generally much eas-
ier. Hence, GAN’s latent variable structure motivates us to design a structured
dependent proposal with two pairing Markov chains, one in the sample space
X and the other in the latent space Z. As shown in Figure 1, given the cur-
rent pairing samples (zk,xk), we draw the next proposal x′ in a bottom-to-up
way: 1) drawing a latent proposal z′ following q(z′|zk); 2) pushing it forward
through the generator and getting the sample proposal x′ = G(z′); 3) assigning
xk+1 = x′ if the proposal x′ is accepted, otherwise xk+1 = xk if rejected. By uti-
lizing the underlying structure of GANs, the proposed reparameterized sampler
becomes more efficient in the low-dimensional latent space. We summarize our
main contributions as follows:

– We propose a structured dependent proposal of GANs, which reparameter-
izes the sample-level transition x → x′ into the latent-level z → z′ with two
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Table 1: Comparison of sampling methods for GANs in terms of three effective
sampling mechanisms.

Method Rejection step Markov chain Latent gradient proposal

GAN 7 7 7

DRS [2] ✓ 7 7

MH-GAN [27] ✓ ✓ 7

DDLS [5] 7 ✓ ✓
REP-GAN (ours) ✓ ✓ ✓

pairing Markov chains. We prove that our reparameterized proposal admits
a tractable acceptance criterion.

– Our proposed method, called REP-GAN, serves as a unified framework for
the existing sampling methods of GANs. It provides a better balance between
exploration and exploitation by the structured dependent proposal, and also
corrects the bias of Markov chains by the acceptance-rejection step.

– Empirical results demonstrate that REP-GAN achieves better image quality
and much higher sample efficiency than the state-of-the-art methods on both
synthetic and real datasets.

2 Related Work

Although GANs are able to synthesize high-quality images, the minimax nature
of GANs makes it quite unstable, which usually results in degraded sample
quality. A vast literature has been developed to fix the problems of GANs ever
since, including network modules [18], training mechanisms [17] and objectives
[1].

Moreover, there is another line of work using sampling methods to improve
the sample quality of GANs. DRS [2] firstly proposes to use rejection sampling.
MH-GAN [27] instead uses the Metropolis-Hasting (MH) algorithm with an in-
dependent proposal. DDLS [5] and DCD [24] apply gradient-based proposals by
viewing GAN as an energy-based model. Tanaka et al. [25] proposes a similar
gradient-based method named DOT from the perspective of optimal transport.

Different from them, our REP-GAN introduces a structured dependent pro-
posal through latent reparameterization, and includes all three effective sampling
mechanisms, the Markov Chain Monte Carlo method, the acceptance-rejection
step, and the latent gradient-based proposal, to further improve the sample
efficiency. As shown in Table 1, many existing works are special cases of our
REP-GAN.

Our method also belongs to the part of the literature that combine MCMC
and neural networks for better sample quality. Previously, some works com-
bine variational autoencoders [13] and MCMC to bridge the amorization gap
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[22,11,15], while others directly learn a neural proposal function for MCMC
[23,14,28]. Our work instead reparameterizes the high-dimensional sample-level
transition into a simpler low-dimensional latent space via the learned generator
network.

3 Background

GANs model the data distribution pd(x) implicitly with a generator G : Z → X
mapping from a low-dimensional latent space Z to a high-dimensional sample
space X ,

x = G(z), z ∼ p0(z), (1)

where the sample x follows the generative distribution pg(x) and the latent vari-
able z follows the prior distribution p0(z), e.g., a standard normal distribution
N (0, I). In GANs, a discriminator D : X → [0, 1] is learned to distinguish sam-
ples from pd(x) and pg(x) in an adversarial way

min
G

max
D

Ex∼pd(x) log(D(x)) + Ez∼p0(z) log(1−D(G(z))). (2)

[9] point out that an optimal discriminator D implies the density ratio between
the data and generative distributions

D(x) =
pd(x)

pd(x) + pg(x)
⇒ pd(x)

pg(x)
=

1

D(x)−1 − 1
. (3)

Markov Chain Monte Carlo (MCMC) refers to a kind of sampling methods
that draw a chain of samples x1:K ∈ XK from a target distribution pt(x). We
denote the initial distribution as px0(x) and the proposal distribution as q(x′|xk).
With the Metropolis-Hastings (MH) algorithm, we accept the proposal x′ ∼
q(x′|xk) with probability

α (x′,xk) = min

(
1,

pt (x
′) q (xk|x′)

pt (xk) q (x′|xk)

)
∈ [0, 1]. (4)

If x′ is accepted, xk+1 = x′, otherwise xk+1 = xk. Under mild assumptions, the
Markov chain is guaranteed to converge to pt(x) as K → ∞. In practice, the
sample efficiency of MCMC crucially depends on the proposal distribution to
trade off between exploration and exploitation.

4 The Proposed REP-GAN

In this section, we first review MH-GAN and point out the limitations. We then
propose our structured dependent proposal to overcome these obstacles, and
finally discuss its theoretical properties as well as practical implementations.
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4.1 From Independent Proposal to Dependent Proposal

MH-GAN [27] first proposes to improve GAN sampling with MCMC. Specifically,
given a perfect discriminator D and a decent (but imperfect) generator G after
training, they take the data distribution pd(x) as the target distribution and use
the generator distribution pg(x) as an independent proposal

x′ ∼ q (x′|xk) = q (x′) = pg(x
′). (5)

With the MH criterion (Eqn. (4)) and the density ratio (Eqn. (3)), we should
accept x′ with probability

αMH (x′,xk) = min

(
1,

pd (x
′) q (xk)

pd (xk) q (x′)

)
= min

(
1,

D (xk)
−1 − 1

D (x′)
−1 − 1

)
. (6)

However, to achieve tractability, MH-GAN adopts an independent proposal q(x′)
with poor sample efficiency. As the proposed sample x′ is independent of the
current sample xk, the difference between the two samples can be so large that
it results in a very low acceptance probability. Consequently, samples can be
trapped in the same place for a long time, leading to a very slow mixing of the
chain.

A natural solution is to take a dependent proposal q(x′|xk) that will propose
a sample x′ close to the current one xk, which is more likely to be accepted.
Nevertheless, the problem of such a dependent proposal is that its MH acceptance
criterion

αDEP (x′,xk) = min

(
1,

pd (x
′) q (xk|x′)

pd (xk) q (x′|xk)

)
, (7)

is generally intractable because the data density pd(x) is unknown. Besides, it
is hard to design a proper dependent proposal q(x′|xk) in the high dimensional
sample space X with complex landscape. These obstacles prevent us from adopt-
ing a dependent proposal that is more suitable for MCMC.

4.2 A Tractable Structured Dependent Proposal with
Reparameterized Markov Chains

As discussed above, the major difficulty of a general dependent proposal q(x′|xk)
is to compute the MH criterion. We show that it can be made tractable by
considering an additional pairing Markov chain in the latent space.

As we know, samples of GANs lie in a low-dimensional manifold induced by
the push-forward of the latent variable [1]. Suppose that at the k-th step of the
Markov chain, we have a GAN sample xk with latent zk. Instead of drawing a
sample x′ directly from a sample-level proposal distribution q(x′|xk), we first
draw a latent proposal z′ from a dependent latent proposal distribution q(z′|zk).
Afterward, we push the latent z′ forward through the generator and get the
output x′ as our sample proposal.

As illustrated in Figure 1, our bottom-to-up proposal relies on the transi-
tion reparameterization with two pairing Markov chains in the sample space
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X and the latent space Z. Hence we call it a REP (reparameterized) proposal.
Through a learned generator, we transport the transition xk → x′ in the high
dimensional space X into the low dimensional space Z, zk → z′, which enjoys
a much better landscape and makes it easier to design proposals in MCMC al-
gorithms. For example, the latent target distribution is nearly standard normal
when the generator is nearly perfect. In fact, under mild conditions, the REP
proposal distribution qREP(x

′|xk) and the latent proposal distribution q(z′|zk)
are tied with the following change of variables [7,3]

log qREP(x
′|xk) = log q(x′|zk) = log q(z′|zk)−

1

2
log det J⊤

z′Jz′ , (8)

where Jz denotes the Jacobian matrix of the push-forward G at z, i.e., [Jz]ij =
∂ xi/∂ zj ,x = G(z).

Nevertheless, it remains unclear whether we can perform the MH test to de-
cide the acceptance of the proposal x′. Note that a general dependent proposal
distribution does not meet a tractable MH acceptance criterion (Eqn. (7)). Per-
haps surprisingly, it can be shown that with our structured REP proposal, the
MH acceptance criterion is tractable for general latent proposals q(z′|zk).

Theorem 1. Consider a Markov chain of GAN samples x1:K with initial dis-
tribution pg(x). For step k + 1, we accept our REP proposal x′ ∼ qREP(x

′|xk)
with probability

αREP (x′,xk) = min

(
1,

p0(z
′)q(zk|z′)

p0(zk)q(z′|zk)
· D(xk)

−1 − 1

D(x′)−1 − 1

)
, (9)

i.e. let xk+1 = x′ if x′ is accepted and xk+1 = xk otherwise. Further assume
the chain is irreducible, aperiodic and not transient. Then, according to the
Metropolis-Hastings algorithm, the stationary distribution of this Markov chain
is the data distribution pd(x) [6].

Proof. Note that similar to Eqn (8), we also have the change of variables between
pg(x) and p0(z),

log pg(x)|x=G(z) = log p0(z)−
1

2
log det J⊤

z Jz. (10)

According to [6], the assumptions that the chain is irreducible, aperiodic, and
not transient make sure that the chain has a unique stationary distribution, and
the MH algorithm ensures that this stationary distribution equals to the target
distribution pd(x). Thus we only need to show that the MH criterion in Eqn. (9)
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holds. Together with Eqn. (3), (7) and (8), we have

αREP(x
′,xk) =

pd (x
′) q (xk|x′)

pd (xk) q (x′|xk)
=

pd (x
′)q(zk|z′)

(
det J⊤

zk
Jzk

)− 1
2 pg(xk)pg(x

′)

pd (xk)q(z′|zk)
(
det J⊤

z′Jz′
)− 1

2 pg(x′)pg(xk)

=
q(zk|z′)

(
det J⊤

zk
Jzk

)− 1
2 p0(z

′)
(
det J⊤

z′Jz′
)− 1

2 (D(xk)
−1 − 1)

q(z′|zk)
(
det J⊤

z′Jz′
)− 1

2 p0(zk)
(
det J⊤

zk
Jzk

)− 1
2 (D(x′)−1 − 1)

=
p0(z

′)q(zk|z′)(D(xk)
−1 − 1)

p0(zk)q(z′|zk)(D(x′)−1 − 1)
,

(11)
which is the acceptance ratio as desired. Q.E.D.

The theorem above demonstrates the following favorable properties of our
method:

– The discriminator score ratio is the same as αMH(x
′,xk), but MH-GAN is

restricted to a specific independent proposal. Our method instead works for
any latent proposal q(z′|zk). When we take q(z′|zk) = p0(z

′), our method
reduces to MH-GAN.

– Compared to αDEP(x
′,xk) of a general dependent proposal (Eqn. (7)), the

unknown data distributions terms are successfully cancelled in the reparam-
eterized acceptance criterion.

– The reparameterized MH acceptance criterion becomes tractable as it only
involves the latent priors, the latent proposal distributions, and the discrim-
inator scores.

Combining the REP proposal qREP(x
′|xk) and its tractable MH criterion

αREP(x
′,xk), we have developed a novel sampling method for GANs, coined as

REP-GAN. See Appendix 1 for a detailed description. Moreover, our method
can serve as a general approximate inference technique for Bayesian models by
bridging MCMC and GANs. Previous works [16,26,10] also propose to avoid
the bad geometry of a complex probability measure by reparameterizing the
Markov transitions into a simpler measure. However, these methods are limited
to explicit invertible mappings without dimensionality reduction. With this work,
we are the first to show that it is also tractable to conduct such model-based
reparameterization with implicit models like GANs.

4.3 A Practical Implementation

REP-GAN enables us to utilize the vast literature of existing MCMC algorithms
[19] to design dependent proposals for GANs. We take Langevin Monte Carlo
(LMC) as an example. As an Euler-Maruyama discretization of the Langevin
dynamics, LMC updates the Markov chain with

xk+1 = xk +
τ

2
∇x log pt(xk) +

√
τ · ε, ε ∼ N (0, I), (12)
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for a target distribution pt(x). Compared to MH-GAN, LMC utilizes the gradient
information to explore the energy landscape more efficiently. However, if we
directly take the (unknown) data distribution pd(x) as the target distribution
pt(x), LMC does not meet a tractable update rule.

As discussed above, the reparameterization of REP-GAN makes it easier
to design transitions in the low-dimensional latent space. Hence, we instead
propose to use LMC for the latent Markov chain. We assume that the data
distribution also lies in the low-dimensional manifold induced by the generator,
i.e., Supp (pd) ⊂ Im(G). This implies that the data distribution pd(x) also has
a pairing distribution in the latent space, denoted as pt(z). They are tied with
the change of variables

log pd(x)|x=G(z) = log pt(z)−
1

2
log det J⊤

z Jz, (13)

Taking pt(z) as the (unknown) target distribution of the latent Markov chain,
we have the following Latent LMC (L2MC) proposal

z′ = zk +
τ

2
∇z log pt(zk) +

√
τ · ε

= zk +
τ

2
∇z log

pt(zk)
(
det J⊤

zk
Jzk

)− 1
2

p0(zk)
(
det J⊤

zk
Jzk

)− 1
2

+
τ

2
∇z log p0(zk) +

√
τ · ε

= zk +
τ

2
∇z log

pd(xk)

pg(xk)
+

τ

2
∇z log p0(zk) +

√
τ · ε

= zk − τ

2
∇z log(D

−1(xk)− 1) +
τ

2
∇z log p0(zk) +

√
τ · ε, ε ∼ N (0, I),

(14)
where xk = G(zk). As we can see, L2MC is made tractable by our structured
dependent proposal with pairing Markov chains. DDLS [5] proposes a similar
Langevin proposal by formalizing GANs as an implicit energy-based model, while
here we provide a straightforward derivation through reparameterization. Our
major difference to DDLS is that REP-GAN also includes a tractable MH cor-
rection step (Eqn. (9)), which accounts for the numerical errors introduced by
the discretization in Eqn. (12) and ensures that detailed balance holds.

We give a detailed description of the algorithm procedure of our REP-GAN
in Algorithm 1.

4.4 Extension to WGAN

Our method can also be extended to other kinds of GAN, like Wasserstein GAN
(WGAN) [1]. The WGAN objective is

min
G

max
D

Ex∼pd(x)[D(x)]− Ex∼pg(x)[D(x)], (15)

where D : X → R is restricted to be a Lipschitz function. Under certain con-
ditions, WGAN also implies an approximate estimation of the density ratio [5],
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Algorithm 1 GAN sampling with Reparameterized Markov chains (REP-GAN)
Input: trained GAN with (calibrated) discriminator D and generator G, Markov chain
length K, latent prior distribution p0(z), latent proposal distribution q(z′|zk);
Output: an improved GAN sample xK ;

Draw an initial sample x1: 1) draw initial latent z1 ∼ p0(z) and 2) push forward
x1 = G(z1);
for each step k ∈ [1,K − 1] do

Draw a REP proposal x′ ∼ qREP(x
′|xk): 1) draw a latent proposal z′ ∼ q(z′|zk),

and 2) push forward x′ = G(z′);
Calculate the MH acceptance criterion αREP(xk,x

′) following Eqn. (9);
Decide the acceptance of x′ with probability αREP(xk,x

′);
if x′ is accepted then

Let xk+1 = x′, zk+1 = z′

else
Let xk+1 = xk, zk+1 = zk

end if
end for

D(x) ≈ log
pd(x)

pg(x)
+ const ⇒ pd(x)

pg(x)
≈ exp(D(x)) · const. (16)

Following the same derivations as in Eqn. (11) and (14), we will have the WGAN
version of REP-GAN. Specifically, with xk = G(zk), the L2MC proposal follows

z′ = zk +
τ

2
∇zD(xk) +

τ

2
∇z log p0(zk) +

√
τ · ε, ε ∼ N (0, I), (17)

and the MH acceptance criterion is

αREP−W (x′,xk) = min

(
1,

q(zk|z′)p0(z′)
q(z′|zk)p0(zk)

· exp (D(x′))

exp (D(xk))

)
. (18)

5 Experiments

We evaluate our method on two synthetic datasets and two real-world image
datasets as follows.

5.1 Manifold Dataset

Following DOT [25] and DDLS [5], we apply REP-GAN to the Swiss Roll dataset,
where data samples lie on a Swiss roll manifold in the two-dimensional space. We
construct the dataset by scikit-learn with 100,000 samples, and train a WGAN
with the same architecture as DOT and DDLS, where both the generator and
discriminator are fully connected neural networks with leaky ReLU nonlineari-
ties. We optimize the model using the Adam optimizer, with learning rate 0.0001.
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Fig. 2: Visualization of samples with different sampling methods on the Swiss
Roll dataset. Here tau denotes the Langevin step size in Eqn. (17).

After training, we draw 1,000 samples with different sampling methods. Follow-
ing previous practice, we initialize a Markov chain with a GAN sample, run it
for K = 100 steps, and collect the last example for evaluation.

As shown in Figure 2, with appropriate step size (τ = 0.01), the gradient-
based methods (DDLS and REP-GAN) outperform independent proposals (DRS
and MH-GAN) by a large margin, while DDLS is more discontinuous on shape
compared to REP-GAN. In DDLS, when the step size becomes too large (τ =
0.1, 1), the numerical error of the Langevin dynamics becomes so large that the
chain either collapses or diverges. In contrast, those bad proposals are rejected
by the MH correction steps of REP-GAN, which prevents the misbehavior of the
Markov chain.

5.2 Multi-modal Dataset

As GANs are known to suffer from the mode collapse problem [8], we also com-
pare different GAN sampling methods in terms of modeling multi-modal distribu-
tions. Specifically, we consider the 25-Gaussians dataset that is widely discussed
in previous work [2,27,5]. The dataset is generated by a mixture of twenty-five
two-dimensional isotropic Gaussian distributions with variance 0.01, and means
separated by 1, arranged in a grid. We train a small GAN with the standard
WGAN-GP objective following the setup in [25]. After training, we draw 1,000
samples with different sampling methods.

As shown in Figure 3, compared to MH-GAN, the gradient-based methods
(DDLS and ours) produce much better samples close to the data distribution
with proper step size (τ = 0.01). Comparing DDLS and our REP-GAN, we can
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missing modes

Fig. 3: Visualization of samples with different sampling methods on the 25-
Gaussians dataset. Here τ denotes the Langevin step size in Eqn. (17).

Vanilla sampling

n=9

n=13

DDLSMH-GAN REP-GAN (ours)

missing mode

Fig. 4: Visualization of the mixture-of-Gaussian experiments with 9x9 (1st row)
and 13x13 (2nd row) modes with proper step size τ = 0.01. True data points are
shown in grey (in background), and generated points are shown in blue.

notice that DDLS tends to concentrate so much on the mode centers that its
standard deviation can be even smaller than the data distribution. Instead, our
method preserves more sample diversity while concentrating on the mode centers.
This difference becomes more obvious as the step size τ becomes larger. When
τ = 0.1, as marked with blue circles, DDLS samples become so concentrated that
some modes are even missed. When τ = 1, DDLS samples diverge far beyond
the 5 × 5 grid. In comparison, our REP-GAN is more stable because the MH
correction steps account for the numerical errors caused by large τ .

These distinctions also become even more obvious when we scale to more
modes. As shown in Figure 4, we also compare them w.r.t. mixture of Gaus-
sians with 9 × 9 and 13 × 13 modes, respectively. Under the more challenging
scenarios, we can see that the gradient-based methods still consistently outper-
forms MH-GAN. Besides, our REP-GAN has a more clear advantage over DDLS.
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Table 2: Inception Scores of different sampling methods on CIFAR-10 and
CelebA, with the DCGAN and WGAN backbones.

Method CIFAR-10 CelebA
DCGAN WGAN DCGAN WGAN

GAN 3.219 3.740 2.332 2.788
DRS [2] 3.073 3.137 2.869 2.861
MH-GAN [27] 3.225 3.851 3.106 2.889
DDLS [5] 3.152 3.547 2.534 2.862
REP-GAN (ours) 3.541 4.035 2.686 2.943

Specifically, for 9×9 modes, our REP-GAN produces samples that are less noisy,
while preserving all the modes. For 13×13 modes, DDLS makes a critical mistake
that it drops one of the modes. As discussed above, we believe this is because
DDLS has a bias towards regions with high probability, while ignoring the diver-
sity of the distribution. In comparison, REP-GAN effectively prevents such bias
by the MH correction steps.

5.3 Real-world Image Dataset

Following MH-GAN [27], we conduct experiments on two real-world image datasets,
CIFAR-10 and CelebA, for two models, DCGAN [20] and WGAN [1]. We adopt
the DCGAN generator and discriminator networks as our backbone networks.
Following the conventional evaluation protocol, we initialize each Markov chain
with a GAN sample, run it for 640 steps, and take the last sample for evaluation.
We collect 50,000 samples to evaluate the Inception Score⋆ ⋆ ⋆ [21]. The step size
τ of our L2MC proposal is 0.01 on CIFAR-10 and 0.1 on CelebA. We calibrate
the discriminator with Logistic Regression as in [27].

From Table 2, we can see our method outperforms the state-of-the-art sam-
pling methods in most cases. In Table 3, we also present the average Inception
Score and acceptance ratio during the training process. As shown in Table 3a,
our REP-GAN can still outperform previous sampling methods consistently and
significantly. Besides, in Table 3b, we find that the average acceptance ratio of
MH-GAN is lower than 0.05 in most cases, which is extremely low. While with
our reparameterized dependent proposal, REP-GAN achieves an acceptance ra-
tio between 0.2 and 0.5, which is known to be a relatively good tradeoff for
MCMC algorithms.

5.4 Algorithmic Analysis

Ablation Study We conduct an ablation study of the proposed sampling al-
gorithm, REP-GAN, and the results are shown in Table 4. We can see that

⋆ ⋆ ⋆ For fair comparison, our training and evaluation follows the the official code of MH-
GAN [27]: https://github.com/uber-research/metropolis-hastings-gans

https://github.com/uber-research/metropolis-hastings-gans
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Table 3: Average Inception Score (a) and acceptance ratio (b) vs. training epochs
with DCGAN on CIFAR-10.

(a) Inception Score (mean ± std)

Epoch 20 21 22 23 24

GAN 2.482 ± 0.027 3.836 ± 0.046 3.154 ± 0.014 3.383 ± 0.046 3.219 ± 0.036
MH-GAN 2.356 ± 0.023 3.891 ± 0.040 3.278 ± 0.033 3.458 ± 0.029 3.225 ± 0.029
DDLS 2.419 ± 0.021 3.332 ± 0.025 2.996 ± 0.035 3.255 ± 0.045 3.152 ± 0.028
REP-GAN 2.487 ± 0.019 3.954 ± 0.046 3.294 ± 0.030 3.534 ± 0.035 3.541 ± 0.038

(b) Average Acceptance Ratio (mean ± std)

Epoch 20 21 22 23 24

MH-GAN 0.028 ± 0.143 0.053 ± 0.188 0.060 ± 0.199 0.021 ± 0.126 0.027 ± 0.141
REP-GAN 0.435 ± 0.384 0.350 ± 0.380 0.287 ± 0.365 0.208 ± 0.335 0.471 ± 0.384

Table 4: Ablation study of our REP-GAN with Inception Scores (IS) and accep-
tance ratios on CIFAR-10 with two backbone models, DCGAN and WGAN.

Method DCGAN WGAN
Accept Ratio IS Accept Ratio IS

REP-GAN 0.447 ± 0.384 3.541 ± 0.038 0.205 ± 0.330 4.035 ± 0.036
REP-GAN w/o REP proposal 0.027 ± 0.141 3.225 ± 0.029 0.027 ± 0.141 3.851 ± 0.044
REP-GAN w/o MH rejection - 3.152 ± 0.028 - 3.547 ± 0.029

without our proposed reparameterized (REP) proposal, the acceptance ratio is
very small (with an independent proposal instead). Consequently, the sample
quality degrades significantly. Also, we can find that the MH correction step
also matters a lot, without which the sample quality of Langevin sampling be-
comes even worse than the independent proposal. The ablation study shows the
necessity of both REP proposal and MH rejection steps in the design of our
REP-GAN.

Markov Chain Visualization In Figure 5, we demonstrate two Markov chains
sampled with different methods. We can see that MH-GAN is often trapped in
the same place because of the independent proposals. DDLS and REP-GAN
instead gradually refine the samples with gradient steps. In addition, compared
the gradient-based methods, we can see that the MH rejection steps of REP-
GAN help avoid some bad artifacts in the images. For example, in the camel-like
images marked in red, the body of the camel is separated in the sample of DDLS
(middle) while it is not in the sample of REP-GAN (bottom). Note that, the
evaluation protocol only needs the last step of the chain, thus we prefer a small
step size that finetunes the initial samples for better sample quality. As shown
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Fig. 5: The first 15 steps of two Markov chains with the same initial samples,
generated by MH-GAN (top), DDLS (middle), and REP-GAN (bottom).

Fig. 6: Visualization of 5 Markov chains of our REP proposals (i.e., REP-GAN
without the MH rejection steps) with a large step size (τ = 1).

in Figure 6, our REP proposal can also produce very diverse images with a large
step size.

Computation Overhead We also compare the computation cost of the gradient-
based sampling methods, DDLS and REP-GAN. They take 88.94 s and 88.85s,
respectively, hence the difference is negligible. Without the MH-step, our method
takes 87.62s, meaning that the additional MH-step only costs 1.4% computation
overhead, which is also negligible, but it brings a significant improvement of
sample quality as shown in Table 4.

6 Conclusion

In this paper, we have proposed a novel method, REP-GAN, to improve the sam-
pling of GAN. We devise a structured dependent proposal that reparameterizes
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the sample-level transition of GAN into the latent-level transition. More impor-
tantly, we first prove that this general proposal admits a tractable MH criterion.
Experiments show our method does not only improve sample efficiency but also
demonstrate state-of-the-art sample quality on benchmark datasets over existing
sampling methods.
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